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Abstract

In this article, primarily a brief discussion about the formulation of unsaturated soils including the equilibrium, air
and moisture transfer equations is presented. Then the closed form two-dimensional Green’s functions of the governing
differential equations for an unsaturated deformable porous medium with linear elastic behavior for a symmetric polar
domain in both Laplace transform and time domains have been introduced, for the first time. Using the linear form of
the governing differential equations and considering the effects of non-linearity of the governing equations, the Green’s
functions have been derived exactly and verified in both Laplace transform and time domains.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Prediction and simulation of unsaturated soil behavior are of great importance in making critical deci-
sions that affect many facets of engineering design and construction and, therefore, have been the issue of
growing concern for several decades. In order to model unsaturated soil behavior, firstly the governing par-
tial differential equations should be derived and solved. Regarding the form and combination of the gov-
erning partial differential equations, with the exception of some simple cases, the closed form solutions of
the partial differential equations are not available. Therefore the numerical techniques have been widely
used for such partial differential equations. Both finite and boundary element methods (BEM) have been
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used for obtaining the response of such domains. The finite element method, regarding its vast ability in
geomechanics as well as many other areas, has been used in many codes that have been developed for both
saturated and unsaturated cases, though the necessity of finding the Green’s functions for the governing
partial differential equations to develop a BEM model seems to have reduced the development rate of
BEM in different fields.

Many researches have been focused on deriving the fundamental solutions of the governing partial dif-
ferential equations for saturated media that have successfully resulted in developing some BEM models for
saturated soils (Nowacki, 1966; Cleary, 1977; Burridge and Vargas, 1979; Cheng and Liggett, 1984a,b; Nor-
ris, 1985; Kaynia and Banerjee, 1992).

According to the authors’ knowledge, the fundamental solutions of the governing partial differential
equations for unsaturated porous media have not been developed so far, hence the development of a
BEM model for unsaturated phenomenon is not yet possible. The present research is an effort to derive such
Green’s functions in order to develop a BEM formulation and model for unsaturated soils.

2. Literature review

There are numerous media encountered in engineering practice whose behavior is not consistent with the
principles and concepts of classical saturated soil mechanics. Commonly it is the presence of more than two
phases that results in a media that is difficult to deal with in engineering applications. Unsaturated soils
form the largest category of materials, that cannot be classified by classical saturated soil mechanics con-
cepts. Any soil near the ground surface in a relatively dry environment will be subjected to negative pore-
water pressure and possible desaturation.

An unsaturated soil is commonly characterized by three phases, soil solids, water, and air. Although
there is a debate over existence of a fourth phase, a so called air-water interface or contractile skin
(Fredlund and Morgenstern, 1977), in this research three phases approach is adopted.

The first ISSMFE conference held in 1936 provided a forum for the establishment of principles and
equations relevant to saturated soil mechanics. Researches at Imperial College began to establish the basic
concepts of unsaturated soils behavior in the late 1950s (Bishop, 1959).

One of the first problems that appeared to confuse civil engineers was the movement of water above the
ground water table. The term ‘capillary’ was adopted to describe the phenomenon of water flow upward
from the static ground water table. Hogentogler and Barber (1941) attempted to present a comprehensive
review of the nature of the capillary.

Terzaghi (1943) in his book ‘Theoretical soil mechanics’ summarized the mentioned researches and en-
dorsed the concepts related to the capillary tube model. He derived an equation for the time required for the
rise of water in capillary zone, that appears to overestimate the rate of capillary rise. Lambe (1951) per-
formed the open tube capillary rise and drainage tests on graded sands and silts with various initial degrees
of saturation.

The mechanical behavior of a soil can be described in terms of the state of stress in the soil. The state of
stress in soil consists of certain combinations of stress variables that can be referred to as stress state vari-
ables. The number of stress variables required for the description of the stress state of a soil depends pri-
marily upon the number of phases involved. The effective stress is simply a stress state variable that can be
used to describe the behavior of a saturated soil. The volume change process and the shear strength char-
acteristics of a saturated soil are both controlled by a change in the effective stress.

In 1941 Biot proposed a general theory of consolidation for an unsaturated soil with occluded air bub-
bles. The constitutive equations relating stress and strain were formulated in terms of the effective stress
(0 — pw) and the pore water pressure p,, (Biot, 1956a). In the other words, the need for separating the effects
of total stress and pore-water pressure was recognized.
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Bishop (1959) suggested a tentative expression for effective stress that has gained widespread reference

G/:(U_pa)+X(pa_pw) (1)
in which ¢ and p, stand for stress and air pressure, respectively. The magnitude of y parameter is unity for a
saturated soil and zero for a dry soil. The relationship between y and the degree of saturation, S,, was ob-
tained experimentally.

Jennings and Burland (1962) appear to be the first to suggest that Bishop’s equation did not provide an
adequate relationship between volume change and effective stress for most soils, particularly those below a
critical degree of saturation. That was estimated to be approximately twenty percents for silts and sands
and as high as ninety percents for clays.

Coleman (1962) suggested the use of ‘reduced’ stress variables (g — p.), (03 — pa) and (py — p.) to rep-
resent the axial confining and pore-water pressures, respectively, in triaxial tests.

In 1963 Bishop and Blight re-evaluated the proposed effective stress equation for unsaturated soil. It was
noted that a variation in matric suction (p, — py) did not result in the same change in effective stress as did
change in the net normal stress (6 — p,).

Aitchison (1967) pointed out the complexity associated with the y parameter. He stated that a specific
value of y may only relate to a single combination of ¢ and (p, — p) for particular stress path.

Matyas and Radhakrishna (1968) introduced the concept of ‘state parameters’ in describing the volumet-
ric behavior of unsaturated soils. Volume change was presented as a three-dimensional surface with respect
to the state parameters (6 — p,) and (p, — py,). Barden et al. (1969) also suggested that the volume change of
unsaturated soils could be analyzed in terms of the separate components of applied stress, (¢ — p,), and
suction, (P, — pw)-

Numerous effective stress equations have been proposed incorporating a soil parameter in order to form
a single valued effective stress variable, but experiments have demonstrated that the effective stress equation
was not single valued and there was a dependence on the stress path followed. Re-examination of the pro-
posed effective stress equations had led many researchers to suggest the use of independent stress variables
(0 — pa) and (p, — pw) to describe the mechanical behavior of unsaturated soils.

Fredlund and Morgenstern (1976-1977) presented a theoretical stress analysis of an unsaturated soil,
based on multiphase continuum mechanics. They concluded that any two of three possible normal stress
variables can be used to describe the stress state of an unsaturated soil. In other words, there are three pos-
sible combinations that can be used as stress state variables for an unsaturated soil. The stress state vari-
ables can be used to formulate constitutive equations to describe the shear strength and the volume change
behavior of unsaturated soils.

Historically, classical mathematics was the main tool for solving governing differential equations of var-
ious problems in engineering practice. With the advent of high-speed digital computers, increasing number
of engineering analyses are performed via computational methods such as finite differences, finite elements
and boundary elements methods vastly in use since the 1960s. However it needs to be emphasized though
appearing trivial and repetitive, that computational methods can, and in many cases should, benefit from
classical mathematical analysis. This is especially true in the case of BEM where a specific and important
subject is to determine the fundamental solutions and boundary integral equations pertaining to governing
differential equations via classical mathematics.

The corresponding fundamental solutions for governing differential equations of saturated soils have
been introduced through the last decades. Cleary (1977) derived the fundamental solutions for quasi-static
problem following the earlier work of Nowacki (1966). Closed form Laplace transform domain quasi-static
poroelastic fundamental solutions were obtained by Cheng and Liggett (1984a,b). The first attempt to ob-
tain fundamental solutions for dynamic poroelasticity seems to be presented by Burridge and Vargas (1979)
who presented a general solution procedure similar to that of Deresiewicz (1960). Later, Norris (1985)
derived time harmonic Green’s functions for a point force in the solid and a point force in the fluid.
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Afterwards, Kaynia and Banerjee (1992) used a solution scheme similar to that of Norris (1985) and derived
the fundamental solution in the Laplace transform domain as well as transient short-time solution.

The Burridge and Vargas solution was obtained for three forces, while those of Norris and Kaynia and
Banerjee have used six variables (displacements of the solid skeleton and average displacements of the
fluid), both of which seem to be completely inadequate. The first approach does not have enough variables
and the second one has too much.

The well-known time harmonic poroelastic fundamental solutions were introduced by Bonnet (1987) and
Boutin et al. (1987); but they are not without drawback either. The errors in Bonnet’s paper have been
pointed out by Dominguez (1991, 1992). Additionally, Bonnet’s solution dos not allow clear identification
of the sources involved in the calculation, as was noted by Boutin et al. (1987). Boutin on the other hand
worked on the equations that are based upon the homogenization theory for periodic structures (Auriault,
1980; Auriault et al., 1985). However Boutin’s solution is in symmetrical form, while the Green’s functions
for this problem should not be symmetric. Also Weibe and Antes (1991) seem to be the first which obtained
a time domain fundamental solution for the Biot (1956a,b,c) type dynamic poroelasticity by neglecting the
viscous coupling and without numerical evaluation of the kernel functions.

Finally, Chen (1994a,b) provided analytical time domain Green’s functions for two- and three-dimen-
sional full dynamic poroelasticity in two separate papers. Thereupon, Gatmiri and Kamalian (2002) have
modified Chen’s two-dimensional solution and boundary integral formulation to lead to more accurate re-
sults. Also Gatmiri and Nguyen (2005) have derived closed form Green’s functions for two-dimensional sat-
urated soil with incompressible fluid. They have shown that their solution is a good approximation of the
exact solution, especially for the long time.

More recently Schanz and Pryl (2004) have derived dynamic fundamental solutions for deformable soil’s
solid skeleton with compressible and incompressible fluid in Laplace transform domain. By comparison of
the two sets of the derived Green’s functions they have concluded that an incompressible model can only be
used in wave propagation problems if not the short time behavior is considered and also if the ratios of the
compression moduli are very insignificant.

The present research is an effort for deriving these Green’s functions for two-dimensional deformable
quasi-static unsaturated soil. Following some reasonable and necessary simplifications, the fundamental
solutions will be introduced in both frequency and time domains, for the first time. Although, two- and
three-dimensional poroelastostatic Green’s functions for unsaturated soils have been introduced by the
authors (Gatmiri and Jabbari, 2004a,b) for time-independent problems.

3. Governing equations
In unsaturated porous media (Fig. 1) the governing differential equations consist of equilibrium equa-

tions, constitutive equations of the solid skeleton, and continuity and transfer equations for air and water.
These equations may be written as follow (Gatmiri et al., 1998).

Soil Particles

Water

Air

Fig. 1. Unsaturated soil scheme.
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3.1. Equilibrium and constitutive equations of solid skeleton

Equilibrium equations based on the two independent parameters (¢ — p,) and (p, — pw), With elastic or
linear behavior are

(01 = 0ypa) j + Pay b =0 (2)
and stress—strain relations

d(oi; — 6;p,) = Dijudén + 0;;Ds(dp, — dp,,) 3)
or

(05 — 0ypa) = Ayt + 2pes; + 0;Ds(p, — py)- (4)

Considering the strain-deformation relations

&y = 5(uiy + u) ()
the final equation stating the equilibrium of solid skeleton becomes

(A + wuji; + putij + (Ds — 1)p, ; — Dypy; + by = 0. (6)

In Egs. (2)+(6) 4 and pu are Lamé’s coefficients, Dy, are the coefficients of soil elasticity and Dy is the coef-
ficient of deformations due to suction effect. In addition, o, ¢, u and b stand for stress, strain, displacement
of soil’s solid skeleton and the body forces, respectively. Also, p, and p,, denote air and water pressures and
0;; represents the Kronecker delta operator.

3.2. Continuity and transfer equations for air

A combination of generalized Darcy’s (1856) law for air transfer and conservation law for air mass, leads
to the general equation for air transfer. The air velocity, u,, is defined as

Uy = —K,V ({’uz), 7

a

where 7, and z are air unit weight and the element’s height from an arbitrary level, respectively. The air
coefficient of permeability, K,, is defined as

Ko =D [e(1 - 5,))", (8)

Ha
where u,, e and S; are air dynamic viscosity, void ratio and degree of saturation, respectively and Dg and
E are constants (Lambe and Whitman, 1969).
In the similar manner, the water velocity, u,, is

uy = — K,V (& + Z) )
Pw
in which v, is water unit weight. K, is the water permeability and is defined as (Kovacs, 1981)
S — 5.\
KW = KWZ 3 o ) 10
(T552) (10)
where S, is residual degree of saturation and K., is the intrinsic water permeability defined as
KWZO = aleoakwe, (11)

where ag,, and og,, are constant coefficients.
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The mass conservation law for air unit volume is written as (Alonso et al., 1988)
0 .
3 WPant[l = Si(1 = H)l} + divip, (ua + Huy)] = 0 (12)

in which H is the Henry’s coefficient and denotes the amount of dissolved air in water, p, is air density, ¢ is
time variable and n stands for porosity.

Assuming constant p, and K, in space, dispensing with variations of p, in time, and remembering that
the Laplacian of z is zero, we have

Poa g, 1 PR 2, S~ 8.1 - H)), (13)
a Tw ot
where div, V and V? stand for divergence, gradient and Laplacian operators.

We note that according to Eq. (8) K, is a function of S, which corresponds to physical reality of air flow
in unsaturated media. Keeping K, as a function dependent of S, and consequently of (p, — p,,) makes the
differential equation non-linear (or with variable coefficients) so that deriving the considered Green’s func-
tions will become too difficult, at least with common methods. Therefore as a first step of deriving the
Green’s functions, it is reasonable to keep the effects of K, by using S, values in different constant suction
areas. Consequently, the effects of S; have been considered in air coefficient of permeability and the basic
physical concept of the effects of S; is preserved by assuming K, as a step function of (p, — py,) for each
area.

One can write the right-hand side of Eq. (13) as

g (1= .1~ 1)) = (1= 81 = H) S 0) — a1~ 1) ()]
S =il - ) 550 (14)

:p{u—&u—H» :

ot
where the hat sign () denotes that the parameter is assumed constant during the infinitesimal period dz.
The porosity, n, may be written as

n=g¢g =¢g;= Ui (15)

Numerous relations have been introduced to define the degree of saturation of unsaturated soils, but the
logarithmic form based on suction variations is one of the most common and reliable ones. Logarithmic
form of the degree of saturation is chosen here in the form of (Fredlund and Rahardjo, 1993):

Sy = a+ Blog(p, — p,,); (16)

where o and f are constants. By choosing (« = 1) and assuming a negative f3, one can see that any increase
in suction results a decrease in S; and any decrease in suction results the approach of S; to one (saturated).
Considering the Taylor expansion of In(x) about x = 0 (Spiegel, 1999)

e k x2 x3

In(1+x) =S (-)"Z=x-LT {
n(l40) =) (-)T g =xog g (17)
and keeping the first term !, we have

Sr:a+ﬁ(pa_pw) (18)

! Keeping more than the first power of x will make the governing differential equations too complicated such that we will not be able
to apply a Laplace transform. In addition, many references use the equation, especially in small values of stress and suction, in the
linear form.
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consequently, one may write the right-hand side of Eq. (13) as

0 0
pull = (a+ Blp, = )1 = )] < () — (1 = H) = (p, — ) (19)
and finally the air transfer equation or Egs. (12) and (13) will be
K, Hp,K,
L v2pa + P Vzpw
Va Vw
. 0 0
= —puBss(1 = H) - (py = p) + pul1 = (4 Blp, — p)(1 = )] (). (20)

3.3. Continuity and transfer equations for water

Again by applying the generalized Darcy’s (1856) law for water transfer and mass conservation law to-
gether, one can obtain the same relation for water (Alonso et al., 1988).
Applying the mass conservation law for water, the water transfer equation will be

0 .
= punS] +div[pyin] =0, (21)
where p,, is water density.

Considering Eq. (9) and again assuming constant p,, and K, in space and dispensing with variations of
Pw In time, we have

prW 2 0
Pw2w = p. —[nS,]. 22
. Vb, pwat[n ] (22)

A discussion similar to that made for K, shows that it is inevitable to dispense with variations of K, in the
specified regions of S;. Assuming constant K, for the specified regions of S, is, indeed, assuming it as a step
function of S; that simply reflects the basic concept of the relation between K, and S;.

The right-hand side of Eq. (22) has previously derived in Eq. (14) and consequently we obtain

0K ) 0
y_vzpw = pwﬁui,i& (pa _pw) + Pw [d + ﬁ(pa w)] ot (ul l) (23)
4. Laplace transform

One of the most common and straightforward methods for eliminating the time variable of a partial dif-
ferential equation is to apply the Laplace transform. In this manner, after solving the differential equation

in Laplace transform domain, one can obtain the time domain solution by applying an inverse Laplace
transform on the Laplace transform domain solution. We remember that (Spiegel, 1965)

Lf (x,1), 5] :f(x, s) = /000 e f (x,t)dt

f(%f,s,t) =sZ(f) —
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and assuming

Ui(i—0) =0 (25)
Egs. (6), (20) and (23) will be reduced to Egs. (26)—(28)
(2+ Wity + it ;= Po; + Ds(Pyy — Pus) +bi =0, (26)
Kan. Hp Ky 5. . . -
Fase v, + L2V, = psll = (a4 Blo, — ) (1 — H)li

a w

- paai,isﬂ(l - H)(i)d _ﬁw) - pa[l - (a + ﬁ(ﬁa _pw))(l - H)]uisi(fzo)
+ Pt B(1 — H)(Paii—0) — Puwi=0))s (27)
p‘;ﬁvzpw = pws[a + ﬁ(pa _pw)]i’llli + prﬁi,iﬁ(ﬁa _i)w)
— pylo+ PP, — ﬁw)]”i,i<t:0> - Pwi’i,iﬁ(Pa(t:()) _pw(t:O))v (28)

where .Z is the Laplace transform operator, s is the Laplace transform parameter and the tilde denotes the
variables in Laplace transform domain. Finally, one can simplify the above three equations in the forms of

ity + el jj + C13Py; + Clapy,; +c1s = 0, (29)
ity + Cnp, + €3V P, 4 cupy, + 5V Py, + 2 = 0, (30)
sl + cnpy + V2P, + Py, + s =0 i,j=1,2, (31)
where the ¢;; coefficients are
c=A+p
Cio2 = H
ci3 = —1+ D
ci4 = —Dj
Cls = Z?z
e = spy[l = (e + B(p, — py))(1 — H)]
Cyp = _Spaﬂaz:i(l - H)
,DaKa
€3 =———
Va
Cq = Spaﬁfm(l - H) (32)
Ky
€25 = — Pl
Tw

26 = —pa[l = (o0 + B(Py — Py)) (1 — H) i ii1=0) + patiiB(1 — H)(pa(t:O) _pw(t:()))
= S.Dw[a + ﬁ(ﬁa 7pw)]

Cyp = spwﬁui,i

3

K
C33 = PR
Yw
C3y = *Spwﬁih:i
35 = =Pyl + B(Py — Do) thiic=0) — Pwﬁ(l’au:()) —Pw(zz()))f‘iw
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5. Green’s functions

One may write the differential equations (29)—(31) in the following matrix form:

[Cjl x & = f, (33)
where C;; = ¢; x d; and

w; = i:l,' i= 1,2

w3 = pa (34)

and

f3=—cx% (35)

Ja=—c3s

in which dj; are the differential operators.

The physical interpretation of Green’s function, fundamental solution or kernel of a differential equation
is a potential function p(x,&) in the point x of the domain that has been resulted from an excitation e(&) in
excitation point ¢. This excitation may be the Dirac delta function or the unit impact load. On the other
hand, the fundamental solution is the simplest solution of the differential equation that is due to a unit
and instantly impact in a domain with infinite boundaries.

Therefore, one may assume a unit point load d(x) instead of the right-hand side of the differential equa-
tion. The most common and straightforward method for deriving the Green’s functions of a system of dif-
ferential equations, is the Kupradze (Kupradze et al., 1979) or Hérmander’s method (Hérmander, 1963).
According to this method, the problem is to find the function G = [g,;] which satisfies the equation

[Cirl[gi] + [1]6(x) = 0, (36)
where [/] is the identity matrix. Also from the matrix algebra we know that
[Cl[Cyy] = (1] det(Cy). (37)
If there is a scalar function that satisfies Eq. (38)
det(Cy)p + d(x) = 0, (38)
substituting from Eq. (37) into Eq. (38) and multiplying by [/], one may obtain

[Cil [Ciyle + []0(x) = 0. (39)
The comparison of Egs. (36) and (39) leads to
8] = [Clo. (40)

Indeed, the problem has been reduced to finding a scalar function ¢ that satisfies Eq. (38) and the com-
putation of cofactor matrix [C} ].
Computing the determinant of the [C;] matrix, Eq. (38) under Laplace transform is as follows:

1
(DV® + D,V° +D3V4)(p+;5(x) =0, (41)
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where V" = (V?)" represents n occurrence(s) of the Laplacian operator. Also Dy, D, and D5 are

Dy = cia(en + ciz)easess
D, = 012(—014023031 + 013(025(331 - 021033) - (Cn + Clz)(Czscsz — CC33 — 023034)) (42)
D; = 012(013(024031 - 6’21034) + 014(021032 - 022031) - (011 + 6’12)(024032 - 022034))-

Now, one can write Eq. (41) in the following form:

<v4+&vz+&

20+ ) D1sV()] + o) = 0 @)

defining an interim function @ as

® = DisV* (o) (44)
Eq. (43) will be changed to the form of

(V2 =)V = 23)® 4 6(x) = 0, (45)
where 4} and 43 are

—D, + /D3 — 4D, D;
) (46)

2D,
Eq. (45) may be written as either of the two Egs. (47) and (48)

AMap =

(V2 =)@, 4 6(x) =0

@ = (V2 - 2)p (47)

(V2= 23)®, 4+ 6(x) =0

&= (V= 7)o w

The above differential equations are of the familiar Helmholtz type. The Green’s function of Helmholtz dif-
ferential equations for an only r-dependent fully symmetric two-dimensional domain is (Arfken and Weber,
2001 and Ocendon et al., 1999)

K() (/’Lﬂ”) .
[ = 17
2n :
where K,, is the modified Bessel function of order n. However, by subtracting Eq. (47) from (48), one can
obtain

O — @ = (2= (50)
and therefore
_ @2 — (pl _ K()(/lzl”) — KQ(;L]]”)
(25— 4) 2n(4; — 47)

Applying two times the two-dimensional inverse Laplacian operator (Spiegel, 1999)

V2() = / (w / (m?)dr)dr (52)

2, (49)

(51)



B. Gatmiri, E. Jabbari | International Journal of Solids and Structures 42 (2005) 5971-5990 5981

one may obtain the ¢ function as

Ko(igl") _ Ko(/ll}"))

1
o) = D= ) ( 7 by

The [g;;] Green’s functions or cofactor matrix components [C}] are
g = [05(FuV® + FuV* + F13V?) + (Fu V*0,0; + F V70,0, + F230,0,)]¢p
gs = (Fu V' + FV70)e
8u = (FaV'0 + FuV0)g
gy = (Fs1V*'0; + F2V70) e
&, = (Fa V0, + Fa V0o (54)
gn = (FnV° +FpVi)e
Gy = (F3V° + Fu Vo
gn = (F1sV')e
8y = (FsV° +FnVhe i,j=172.

The Fj; coefficients are presented in Appendix A.
5.1. Green’s functions in Laplace transform domain

Now by substituting the ¢ function from Eq. (53) into Eq. (54) and defining intermediate I'; functions
I'y = K&y + K + K133
Iy = K151 + Ky + K353 (55)
I's = K51 Q11 + K€y + K3 Q3
one can obtain the Green’s functions in Laplace transform domain as follow:

x]

- 1
8y = 5,-_,~F1 —&-ﬁ(inx_,« (3 ) I's

- X;
83 = *7(1(31931 + K30Q3)
~ Xi
gy = —7(1(41931 + K4 Q3,)

& = =L (Ks1 0 + K52 (56)
B, = —)%(KMQN + K Q)

83 =KnQu +KnQp,

3 = K733Q) + K2 Q)»

843 = K750,

84 = K301 + K701y i,j=1,

N
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The above Green’s functions are presented in extended form in Appendix D. It is evident from the rela-
tionships in Appendix D that g;; = sg;; and g,; = sg, as have been emphasized by Chen (1994a). Further-
more, Kj; coeflicients and Q;; intermediate functions are shown in Appendices B and C, respectively.

5.2. Green’s functions in the time domain
In order to apply the inverse Laplace transform to the Laplace transform domain Green’s functions, we
need to find the inverse Laplace transforms of the following terms:

K()(I"/lz) /gK()(l"/AQ) SK()(I"/b) Kl(r)vz)/lz SKl(r)uz)

-7 SR BE-R G-A) RE-A)

K] (I"/lz)iz K] (l”;uz) SK] (I")vz) (57)
02 22N ) 5 2 2y 37192 AN
s(—=4) Ahlh—74) Al —4)
where
= \/ml\/5
Jo = \/my\/s (58)
ig — Af = m3s
and the my; coefficients in Eq. (58) are
D, N D3 — éiDlD3
N ) (59)

my, =

2D,

ms = my; — my

According to the Laplace transform references, the inverse Laplace transform of the following terms are
available (Abramowitz and Stegun, 1965 and Spiegel, 1965):

Ko(ays)  Ki(ays)  Ki(ays)
) ) . (60)
s Vs S\/s
The inverse Laplace transforms of the terms in Eq. (60) are shown as A,{a,t] in Appendix E. Now, using
the inverse Laplace transforms A,[a,t], we can obtain the inverse Laplace transforms of the Green’s func-
tions in Eq. (56). For this purpose, the intermediate functions ¥,{r, t] are defined in Appendix F. Using the
K;; coefficients and the intermediate functions ¥,{r, ], we are able to derive the Green’s functions in the time
domain, which are shown in Eq. (62). Defining the ©; intermediate functions as follow:
O, =KuPulr, |+ KnWolr ] + KW,
Oy = K Vai[r, t] + KnWlr, f] + K3 Ws3[r, 1] (61)
O3 = Ky Wir, 1] + Kn¥ulr ] + Kn¥ir,1

the Green’s functions are

XiX;
5 65
r

1
gyl xi x;,t] = 6,0, +r—3(2xix,- —6,7°)0, +

Xi
gilr,xit] = — - (K31 Psi[r, t] + K3 Walr, ])

Xi
gulr,xi 1] = — = (Kat P31[r, 1] + Kp¥aalr, 1))
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Xi
8ulr xi, 1] = == (K51 ¥[r 1] + K52 ¥n[r, 1])

Xi
gulr, xi, 1) = *7(1(61 Yo lr,t] + KeaWaalr, ])
gulrt] = Kn¥ulr, ] + KnPilr, 1
gulr, tl = KunPulrt] + KuWPilr, 1

gyl 1] = K75 P 1a[r, 1]

g44[r, l‘] = K76'II11[}’, t} +K77lP]2[l”, l‘] i,j = 1,2. (62)

6. Verification

Since the solutions are presented here for the first time there is no chance for them to be compared with
other corresponding results to find the probable differences and their reasons. However, for the solutions
(mathematical model) to be verified mathematically (Babuska and Oden, 2004), we can show that, for
example if the conditions approach to the poroelastostatic case, the corresponding Green’s functions will
approach to the poroelastostatic Green’s functions {neglecting dissolved air in water and the suction effect
(i.e. H= Dy=0)}. For this purpose and considering Eqs. (29)(31), we only need to substitute the coeffi-
cien/t\s of terms that haAve time variations, such as S, and 7, with zero. This means to substitute the terms &
(or S;) and 5 (or (1 — S;)) and also i;; in K;; statements, with zero. Therefore, only the following coefficients
will remain non-vanishing:

1
Ky =—
= o
A4
Ky=—--——"°_
T 2mp(d+ 2p)
v
Ky=—-——"% 63
= 3T 20Keny (©3)
___Ta
7 2nKa.p,
Tw
Ko = —
7 21K Py,

Among the Q; terms in Laplace transform Green’s functions in Appendix C, those have non-zero terms
are

I
s(4 = 47)
o

s(4 = 4)

Q]] = (K()()uzr))é — K()(]]V)/Au%)

(64)

Q31 (Kl()uzi")},z —Kl(}uﬂ")/"hl).

By substituting the terms ¢ (or Er) and also i;; with zero, all the m; terms and subsequently 4; and A, will
vanish. Therefore we necessarily shall find the limits of Q;; and @25, while 4, and 4, approach zero. These
limits are
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lim {Q”}:_ln(r)

1,20 K 65)
lim (@=L (L1 (
Al,lx?lo{ al =5 (30

Furthermore, all of the Q,; terms in the Green’s functions in Laplace transform domain that have zero
coefficients, have no limits and consequently, their coefficients being zero seems to be normal or inevitable.

Using the limits in Eq. (65), the Green’s functions in Laplace transform domain, after some simplifica-
tions will be obtained as follow:

g = [(A+w) = 2(A+3p) In(r)]r20; + 2(A + w)xix;
mr2sp( A+ 2u)

ij

8 =8y=0
_ yaxi[l 4 21n(r)]

88 = dns(h+ 20)Kap,

gu=0 (66)
. y.In(r)
833 =

2nsK, 0,
81 =83 =0
. ywIn(r)

=== =1,2

844 25K wpy, L] )

and their corresponding terms in time domain are

(G ) = 20+ 30 ()26, + 20+ s
&ij = 8nr2u(A +2p)
8 =84=0
Vaxi[l + 211'1(7')]
83 = 4 7 L Ak
4n(Z+ 21)Kap,

gu=0 (67)
_ YaIn(r)
833 = )
K. p,
84 =81 =0
~ ywIn(r)
844 = 2K op,, i,j=1,2

that are exactly the poroelastostatic Green’s functions (Banerjee, 1994; Gatmiri and Jabbari, 2004a).
Also, from mathematical point of view, one can determine the singularities of the Green’s functions.
Since for the common physical parameters for unsaturated soils

" . (68)
llm{lI/U}:O l,]:1,3

the singularity of all the Green’s functions is only at r = 0.
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7. Conclusion
In this research the closed form two-dimensional Green’s functions of the governing equations of
unsaturated soils, including equilibrium equations with linear elastic constitutive equations and two
equations of air and water transfer have been derived in Laplace transform and time domains for the
first time. For verification of the resulted Green’s functions, it has been demonstrated that if the condi-

tions approach to poroelastostatic case, the Green’s functions will approach to poroelastostatic Green’s
functions exactly.
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Appendix A
F;; coefficients:
Fii = (en +c2)encess

Fiy = —cuepes + 013(025631 - 621033) - (011 + 012)(025032 — CC33 — 023034)

=
|

= 014(021032 - 022031) + C13(6’24031 - C21034) - (011 + Clz)(024032 - 022034)
Fy = —ciienes
Fp = cuycpea + 013(6’21033 - 6’25031) + 6’11(025032 — C22C33 — 023034)

Fay = 014(022631 - 021632) + 013(021634 - 024031) + 011(624032 - 622034)

F31 = —cncises Fy = 012(014032 - 013034)

Fa1 = cpa(ci3cas — craca3) Fug = cia(c13¢24 — c14622)

Fs; = cia(cascar — caiess) Fsy = cia(caacsr — caic)

Fe = —cncaen Fe = cia(caiesy — encsn)

F71 = ci(en +cin)en Fy = cia(—cucs + (en + cia)eu)
F73 = —cpp(en +en)eas Fy = —cip(—caea + (e +cin)en)

F75 = —cip(—ci3es + (en +cin)en)  Fre = cia(en + cin)eas

F77 = cia(—ci3ca + (e + cia)en)
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Appendix B

K;; coefficients:

=oatfp.—py) n=1-<C(1-H)

e 2D, 2mu
Koot _ B4+ 2p)(Kayy + Kwpa)ilii + Kwpo (1 — &)(=1 + Dy) — Kay,, €Dy
27 2nDys 2mu(i+ 20)K Ko
Kot Braywitii
BT oD s 2ap(2 4+ 20K, Ky
Ko — Foo — AHtuw
oD, 2mu(i+ 2p)
Koy — Fa _ B+ 1) (Kapy + Kwpa)itii + Kwpa (1 = &) (=1 + D) — KapyED;
27 2nDys 2mpu(2 4 20K Ky,
Fa
K =-K
B =5 D 13
K — Fa _ n(=14D) Kar — L Byawitii
7D, 2n(A+ 2u)Kap, 7 2nDys 2n(4 4 21)K.Kyp,
Ki = Fa _ _H(_l +DS)KWV3. +DSK3«VW Ki — Fy _ (_1 +H)ﬂya'ywl)i,i
7 2mD, 2n(4 4 2u)K. Ky p,, 27T 2nDys  2n( + 20K Kyp,,
Fs (1=, Fs)
K = = = =—— T K
T onDys  2n(2+ 20K, YT
Fe Tw¢ Fe
K¢ = = Kep=—"—=
T 2nDys  2n(i+ 2u)Ky @ anps2 - P
P Va _ Fno oy (EDs = B2+ 2u)i,)
Ky = = - Ko = = -
2nD, 21K . p, 2nDys 2n(A + 2u)K.Kyp,
_ F73 _ Hya
K7 = 2nD, 21K py
ko= Fr _ van(nDs + (1= H)piyi (7 + 241))
™ 2nDys 2n(A 4 2u)K Ky p,
Koo — Frs  Va¥w(E(L = Dy) + Bitg (2 + 2u))
” 7 2nDys 2n(A + 2u)K.Kyp,
Fr6 Vw
K = = —
7 21D, 21K Py,
K= Fm_ Ya¥w (1 = Ds) — (1 — H) ity (7 + 2p))

B 2nDys 2n(A 4+ 20K Ky py
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Appendix C

The intermediate functions €

5987

Q. = K()(I’/lz)}é —Ko(}”)q))v% 0 — KQ(}”}Q) - K()(l”)»l)
! s~ 47) GRS
Q]3 _ N Ko(f‘;yz) _Ko(r},l)
(B=m\ 4 a
. N K (I"lz) Kl(r/ll)
Q) =1 (K1(r22) 20 — K1(¥21) A Qy = 5 (1 —
21 <)~§ — )ﬁ)( 1( 2) 2 1( 1) 1) 22 (/1% — /ﬁ) /12 /11
1 A A 1 K](I’/lz) K](I"/l]))
Q) = ———(K1(rhy) 22 — K (ri) 4 Q3 = —
0= o Kb - Kir)h) - 2y (zg—ﬁ)( P i
Q33_ S Kl(l’)bz)_Kl(r}q)
(B=2)\ 4 2
Appendix D
The Green’s functions in Laplace transform domain:
~ K()(V/lz))»z —K()(}";yl)}vz K()(I"/Iz) —Ko(l")»l) N K()(I")uz) Ko(r;q)
8ij = 5in11 /;2 ) L + 5in12 /12 /12 5!’/ 13 }2 )2 02 - 22
s(4y — A7) (4 = 47) (4 = 47) %) A
1 , , )
+ K21 m [(ZX[XI — 5[]7'2)(1(1 (I”)Q)/Lz — K] (r/tl);ul) +X[XJF(K0(V;L2)/1§ — K()(I"/ul))f)]
2T M
K1<I")v2) Kl(r)"l) N .
“erzm |:(2X;x, - 5ijr2)< P _ n —|—x,—xjr(K0(r/L2) — KO(V/q))
Kl(l"/lg) Kl(l"/ﬂbl) Ko(r;uz) Ko(l"/h)
+K23W [(2xixj - 5:‘/"2)( T + XX 2z 2
P (4 = 4) ) 1 b Y
- K31x,- 1 N K32.Xl 1 (Kl(l";xz) Kl(r)"l)>
a=————— (K (rk —Ki(ri)) — -
&3 , S(/{%l—i%)( l(r 2)/L2 l(r 1) l) ” (;é;)h%) ?2& ) ?]) )
- Kaix; Kpx; Ki(ri,) Ki(ri
a= 2 (K\(rha)da — K (rAy) ) — -
o Ty M=K = B g (RS
- K51x,- 1 \ K52x, N K] (}”/12) K](I”)»])
= —— K A, — K )L, )v - -
b= S G e iy - T (R B
- K61x,- 1 N K62X, S Kl(l”/b) Kl(r)q)>
= e (K (ra)is — Ky (A1) ) — -
84 r ()é —/’L%)( l(r 2)/L2 l(r 1) 1) - (}é —)LT) ( 12 j.l
((;7 — Ky Ko(l")uz)/li — Ko(}"/ll)/ﬁ +K72K0(F;Lz) — Ko(r;ul)
B s(% = 1) (4 = &)
- Ko(l’)»z)iz —Ko(?‘il)lf Ko(l"/lz) —Ko(r;ul)
7S VRS
g _ KO(F}LZ)_KO(F)l)
R
G —K K()(l";uz)/lz — K()(l"/l])il Ko(l"/lz) — Ko(r;ul)
8aa = K76 77

s(4 = 43)
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Appendix E

The inverse Laplace transforms and intermediate functions A,{a,]:

Aola,1] = gl{w} _ %F<O’Z_j>

Ki(a\/s 1 2
R e
1 [Ki(av/5s) 21 a
— VJ2OVS) L 4 2 2 hull
Alz[a,t] =Y { S\/E } e 4t 4a F<0,4t
in which

I'(a,x) :/ e dt

and Ki(x) is the modified Bessel function of order i.

Appendix F

The intermediate functions ¥;{r, ¢]:
1
'I’ll[r, l] = 371{911} = m— (I’I’lz/lo[r my, f] - ml/l()[l" ml,t})
3

L (Aol ] — Aol 1)

ms

qjlz[l”, l] = gil{Q]z} =
Vit =2Q }—L Ly [r z]—iA [r q
Bt = 13 _m3 3 0 my, m 0 my,
1
Tzl[}",t]1371{921}:;(\IM2A11[V mz,t]—\/ml/l“[r ml,t])
3

1 1 1
'}/22[7',[]31{922}%(\/%/111[}’ mz,t]—\/—ﬁf/l“[r ml,t])

Paulr,f]l = 2 Q) = miz(\/nTz/llz[r my, t| — /mi A [ry/my, t])

1 1 1
T32[}", t] = gil{Qn} = m—3 (\/—m_z/llz[r mz,t] - \/—m_l/llz[l" ml,t])

1 1 1
lP33[I’,l‘]23_1{933}:m—3(m2\/m_2/112[7 mz,t]—ml\/rn_l/lu[r ml,t])
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