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Abstract

In this article, primarily a brief discussion about the formulation of unsaturated soils including the equilibrium, air
and moisture transfer equations is presented. Then the closed form two-dimensional Green�s functions of the governing
differential equations for an unsaturated deformable porous medium with linear elastic behavior for a symmetric polar
domain in both Laplace transform and time domains have been introduced, for the first time. Using the linear form of
the governing differential equations and considering the effects of non-linearity of the governing equations, the Green�s
functions have been derived exactly and verified in both Laplace transform and time domains.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Prediction and simulation of unsaturated soil behavior are of great importance in making critical deci-
sions that affect many facets of engineering design and construction and, therefore, have been the issue of
growing concern for several decades. In order to model unsaturated soil behavior, firstly the governing par-
tial differential equations should be derived and solved. Regarding the form and combination of the gov-
erning partial differential equations, with the exception of some simple cases, the closed form solutions of
the partial differential equations are not available. Therefore the numerical techniques have been widely
used for such partial differential equations. Both finite and boundary element methods (BEM) have been
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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used for obtaining the response of such domains. The finite element method, regarding its vast ability in
geomechanics as well as many other areas, has been used in many codes that have been developed for both
saturated and unsaturated cases, though the necessity of finding the Green�s functions for the governing
partial differential equations to develop a BEM model seems to have reduced the development rate of
BEM in different fields.

Many researches have been focused on deriving the fundamental solutions of the governing partial dif-
ferential equations for saturated media that have successfully resulted in developing some BEM models for
saturated soils (Nowacki, 1966; Cleary, 1977; Burridge and Vargas, 1979; Cheng and Liggett, 1984a,b; Nor-
ris, 1985; Kaynia and Banerjee, 1992).

According to the authors� knowledge, the fundamental solutions of the governing partial differential
equations for unsaturated porous media have not been developed so far, hence the development of a
BEMmodel for unsaturated phenomenon is not yet possible. The present research is an effort to derive such
Green�s functions in order to develop a BEM formulation and model for unsaturated soils.
2. Literature review

There are numerous media encountered in engineering practice whose behavior is not consistent with the
principles and concepts of classical saturated soil mechanics. Commonly it is the presence of more than two
phases that results in a media that is difficult to deal with in engineering applications. Unsaturated soils
form the largest category of materials, that cannot be classified by classical saturated soil mechanics con-
cepts. Any soil near the ground surface in a relatively dry environment will be subjected to negative pore-
water pressure and possible desaturation.

An unsaturated soil is commonly characterized by three phases, soil solids, water, and air. Although
there is a debate over existence of a fourth phase, a so called air–water interface or contractile skin
(Fredlund and Morgenstern, 1977), in this research three phases approach is adopted.

The first ISSMFE conference held in 1936 provided a forum for the establishment of principles and
equations relevant to saturated soil mechanics. Researches at Imperial College began to establish the basic
concepts of unsaturated soils behavior in the late 1950s (Bishop, 1959).

One of the first problems that appeared to confuse civil engineers was the movement of water above the
ground water table. The term �capillary� was adopted to describe the phenomenon of water flow upward
from the static ground water table. Hogentogler and Barber (1941) attempted to present a comprehensive
review of the nature of the capillary.

Terzaghi (1943) in his book �Theoretical soil mechanics� summarized the mentioned researches and en-
dorsed the concepts related to the capillary tube model. He derived an equation for the time required for the
rise of water in capillary zone, that appears to overestimate the rate of capillary rise. Lambe (1951) per-
formed the open tube capillary rise and drainage tests on graded sands and silts with various initial degrees
of saturation.

The mechanical behavior of a soil can be described in terms of the state of stress in the soil. The state of
stress in soil consists of certain combinations of stress variables that can be referred to as stress state vari-
ables. The number of stress variables required for the description of the stress state of a soil depends pri-
marily upon the number of phases involved. The effective stress is simply a stress state variable that can be
used to describe the behavior of a saturated soil. The volume change process and the shear strength char-
acteristics of a saturated soil are both controlled by a change in the effective stress.

In 1941 Biot proposed a general theory of consolidation for an unsaturated soil with occluded air bub-
bles. The constitutive equations relating stress and strain were formulated in terms of the effective stress
(r � pw) and the pore water pressure pw (Biot, 1956a). In the other words, the need for separating the effects
of total stress and pore-water pressure was recognized.
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Bishop (1959) suggested a tentative expression for effective stress that has gained widespread reference
r0 ¼ ðr � paÞ þ vðpa � pwÞ ð1Þ

in which r and pa stand for stress and air pressure, respectively. The magnitude of v parameter is unity for a
saturated soil and zero for a dry soil. The relationship between v and the degree of saturation, Sr, was ob-
tained experimentally.

Jennings and Burland (1962) appear to be the first to suggest that Bishop�s equation did not provide an
adequate relationship between volume change and effective stress for most soils, particularly those below a
critical degree of saturation. That was estimated to be approximately twenty percents for silts and sands
and as high as ninety percents for clays.

Coleman (1962) suggested the use of �reduced� stress variables (r1 � pa), (r3 � pa) and (pw � pa) to rep-
resent the axial confining and pore-water pressures, respectively, in triaxial tests.

In 1963 Bishop and Blight re-evaluated the proposed effective stress equation for unsaturated soil. It was
noted that a variation in matric suction (pa � pw) did not result in the same change in effective stress as did
change in the net normal stress (r � pa).

Aitchison (1967) pointed out the complexity associated with the v parameter. He stated that a specific
value of v may only relate to a single combination of r and (pa � pw) for particular stress path.

Matyas and Radhakrishna (1968) introduced the concept of �state parameters� in describing the volumet-
ric behavior of unsaturated soils. Volume change was presented as a three-dimensional surface with respect
to the state parameters (r � pa) and (pa � pw). Barden et al. (1969) also suggested that the volume change of
unsaturated soils could be analyzed in terms of the separate components of applied stress, (r � pa), and
suction, (pa � pw).

Numerous effective stress equations have been proposed incorporating a soil parameter in order to form
a single valued effective stress variable, but experiments have demonstrated that the effective stress equation
was not single valued and there was a dependence on the stress path followed. Re-examination of the pro-
posed effective stress equations had led many researchers to suggest the use of independent stress variables
(r � pa) and (pa � pw) to describe the mechanical behavior of unsaturated soils.

Fredlund and Morgenstern (1976–1977) presented a theoretical stress analysis of an unsaturated soil,
based on multiphase continuum mechanics. They concluded that any two of three possible normal stress
variables can be used to describe the stress state of an unsaturated soil. In other words, there are three pos-
sible combinations that can be used as stress state variables for an unsaturated soil. The stress state vari-
ables can be used to formulate constitutive equations to describe the shear strength and the volume change
behavior of unsaturated soils.

Historically, classical mathematics was the main tool for solving governing differential equations of var-
ious problems in engineering practice. With the advent of high-speed digital computers, increasing number
of engineering analyses are performed via computational methods such as finite differences, finite elements
and boundary elements methods vastly in use since the 1960s. However it needs to be emphasized though
appearing trivial and repetitive, that computational methods can, and in many cases should, benefit from
classical mathematical analysis. This is especially true in the case of BEM where a specific and important
subject is to determine the fundamental solutions and boundary integral equations pertaining to governing
differential equations via classical mathematics.

The corresponding fundamental solutions for governing differential equations of saturated soils have
been introduced through the last decades. Cleary (1977) derived the fundamental solutions for quasi-static
problem following the earlier work of Nowacki (1966). Closed form Laplace transform domain quasi-static
poroelastic fundamental solutions were obtained by Cheng and Liggett (1984a,b). The first attempt to ob-
tain fundamental solutions for dynamic poroelasticity seems to be presented by Burridge and Vargas (1979)
who presented a general solution procedure similar to that of Deresiewicz (1960). Later, Norris (1985)
derived time harmonic Green�s functions for a point force in the solid and a point force in the fluid.
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Afterwards, Kaynia and Banerjee (1992) used a solution scheme similar to that of Norris (1985) and derived
the fundamental solution in the Laplace transform domain as well as transient short-time solution.

The Burridge and Vargas solution was obtained for three forces, while those of Norris and Kaynia and
Banerjee have used six variables (displacements of the solid skeleton and average displacements of the
fluid), both of which seem to be completely inadequate. The first approach does not have enough variables
and the second one has too much.

The well-known time harmonic poroelastic fundamental solutions were introduced by Bonnet (1987) and
Boutin et al. (1987); but they are not without drawback either. The errors in Bonnet�s paper have been
pointed out by Dominguez (1991, 1992). Additionally, Bonnet�s solution dos not allow clear identification
of the sources involved in the calculation, as was noted by Boutin et al. (1987). Boutin on the other hand
worked on the equations that are based upon the homogenization theory for periodic structures (Auriault,
1980; Auriault et al., 1985). However Boutin�s solution is in symmetrical form, while the Green�s functions
for this problem should not be symmetric. Also Weibe and Antes (1991) seem to be the first which obtained
a time domain fundamental solution for the Biot (1956a,b,c) type dynamic poroelasticity by neglecting the
viscous coupling and without numerical evaluation of the kernel functions.

Finally, Chen (1994a,b) provided analytical time domain Green�s functions for two- and three-dimen-
sional full dynamic poroelasticity in two separate papers. Thereupon, Gatmiri and Kamalian (2002) have
modified Chen�s two-dimensional solution and boundary integral formulation to lead to more accurate re-
sults. Also Gatmiri and Nguyen (2005) have derived closed form Green�s functions for two-dimensional sat-
urated soil with incompressible fluid. They have shown that their solution is a good approximation of the
exact solution, especially for the long time.

More recently Schanz and Pryl (2004) have derived dynamic fundamental solutions for deformable soil�s
solid skeleton with compressible and incompressible fluid in Laplace transform domain. By comparison of
the two sets of the derived Green�s functions they have concluded that an incompressible model can only be
used in wave propagation problems if not the short time behavior is considered and also if the ratios of the
compression moduli are very insignificant.

The present research is an effort for deriving these Green�s functions for two-dimensional deformable
quasi-static unsaturated soil. Following some reasonable and necessary simplifications, the fundamental
solutions will be introduced in both frequency and time domains, for the first time. Although, two- and
three-dimensional poroelastostatic Green�s functions for unsaturated soils have been introduced by the
authors (Gatmiri and Jabbari, 2004a,b) for time-independent problems.
3. Governing equations

In unsaturated porous media (Fig. 1) the governing differential equations consist of equilibrium equa-
tions, constitutive equations of the solid skeleton, and continuity and transfer equations for air and water.
These equations may be written as follow (Gatmiri et al., 1998).
Fig. 1. Unsaturated soil scheme.
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3.1. Equilibrium and constitutive equations of solid skeleton

Equilibrium equations based on the two independent parameters (r � pa) and (pa � pw), with elastic or
linear behavior are
ðrij � dijpaÞ;j þ pa;i þ bi ¼ 0 ð2Þ

and stress–strain relations
dðrij � dijpaÞ ¼ Dijkldekl þ dijDsðdpa � dpwÞ ð3Þ

or
ðrij � dijpaÞ ¼ kdijekk þ 2leij þ dijDsðpa � pwÞ. ð4Þ

Considering the strain-deformation relations
eij ¼ 1
2
ðui;j þ uj;iÞ ð5Þ
the final equation stating the equilibrium of solid skeleton becomes
ðk þ lÞuj;ij þ lui;jj þ ðDs � 1Þpa;i � Dspw;i þ bi ¼ 0. ð6Þ
In Eqs. (2)–(6) k and l are Lamé�s coefficients, Dijkl are the coefficients of soil elasticity and Ds is the coef-
ficient of deformations due to suction effect. In addition, r, e, u and b stand for stress, strain, displacement
of soil�s solid skeleton and the body forces, respectively. Also, pa and pw denote air and water pressures and
dij represents the Kronecker delta operator.

3.2. Continuity and transfer equations for air

A combination of generalized Darcy�s (1856) law for air transfer and conservation law for air mass, leads
to the general equation for air transfer. The air velocity, ua, is defined as
ua ¼ �Kar
pa
ca

þ z
� �

; ð7Þ
where ca and z are air unit weight and the element�s height from an arbitrary level, respectively. The air
coefficient of permeability, Ka, is defined as
Ka ¼ DK
ca
la

½eð1� SrÞ	EK ; ð8Þ
where la, e and Sr are air dynamic viscosity, void ratio and degree of saturation, respectively and DK and
EK are constants (Lambe and Whitman, 1969).

In the similar manner, the water velocity, uw, is
uw ¼ �Kwr
pw
cw

þ z
� �

ð9Þ
in which cw is water unit weight. Kw is the water permeability and is defined as (Kovacs, 1981)
Kw ¼ Kwz0

Sr � Sru

1� Sru

� �3.5
; ð10Þ
where Sru is residual degree of saturation and Kwz0 is the intrinsic water permeability defined as
Kwz0 ¼ aKw10
aKw e; ð11Þ
where aKw and aKw are constant coefficients.



5976 B. Gatmiri, E. Jabbari / International Journal of Solids and Structures 42 (2005) 5971–5990
The mass conservation law for air unit volume is written as (Alonso et al., 1988)
1 Ke
to app
linear
o

ot
fqan½1� Srð1� HÞ	g þ div½qaðua þ HuwÞ	 ¼ 0 ð12Þ
in which H is the Henry�s coefficient and denotes the amount of dissolved air in water, qa is air density, t is
time variable and n stands for porosity.

Assuming constant qa and Ka in space, dispensing with variations of qa in time, and remembering that
the Laplacian of z is zero, we have
qaKa

ca
r2pa þ

HqaKw

cw
r2pw ¼ qa

o

ot
½nð1� Srð1� HÞÞ	; ð13Þ
where div, $ and $2 stand for divergence, gradient and Laplacian operators.
We note that according to Eq. (8) Ka is a function of Sr which corresponds to physical reality of air flow

in unsaturated media. Keeping Ka as a function dependent of Sr and consequently of (pa � pw) makes the
differential equation non-linear (or with variable coefficients) so that deriving the considered Green�s func-
tions will become too difficult, at least with common methods. Therefore as a first step of deriving the
Green�s functions, it is reasonable to keep the effects of Ka by using Sr values in different constant suction
areas. Consequently, the effects of Sr have been considered in air coefficient of permeability and the basic
physical concept of the effects of Sr is preserved by assuming Ka as a step function of (pa � pw) for each
area.

One can write the right-hand side of Eq. (13) as
qa

o

ot
½nð1� Srð1� HÞÞ	 ¼ qa ð1� Srð1� HÞÞ o

ot
ðnÞ � nð1� HÞ o

ot
ðSrÞ

� �
¼ qa ð1� bS rð1� HÞÞ o

ot
ðnÞ � n̂ð1� HÞ o

ot
ðSrÞ

� �
; ð14Þ
where the hat sign (^) denotes that the parameter is assumed constant during the infinitesimal period ot.
The porosity, n, may be written as
n ¼ ev ¼ eii ¼ ui;i. ð15Þ

Numerous relations have been introduced to define the degree of saturation of unsaturated soils, but the

logarithmic form based on suction variations is one of the most common and reliable ones. Logarithmic
form of the degree of saturation is chosen here in the form of (Fredlund and Rahardjo, 1993):
Sr ¼ a þ b logðpa � pwÞ; ð16Þ

where a and b are constants. By choosing (a = 1) and assuming a negative b, one can see that any increase
in suction results a decrease in Sr and any decrease in suction results the approach of Sr to one (saturated).

Considering the Taylor expansion of ln(x) about x = 0 (Spiegel, 1999)
lnð1þ xÞ ¼
X1
k¼1

ð�1Þk�1 xk

k
¼ x� x2

2
þ x3

3
� � � � ð17Þ
and keeping the first term 1, we have
Sr ¼ a þ bðpa � pwÞ ð18Þ
eping more than the first power of x will make the governing differential equations too complicated such that we will not be able
ly a Laplace transform. In addition, many references use the equation, especially in small values of stress and suction, in the
form.
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consequently, one may write the right-hand side of Eq. (13) as
qa½1� ða þ bðp̂a � p̂wÞÞð1� HÞ	 o
ot
ðui;iÞ � qabûi;ið1� HÞ o

ot
ðpa � pwÞ ð19Þ
and finally the air transfer equation or Eqs. (12) and (13) will be
qaKa

ca
r2pa þ

HqaKw

cw
r2pw

¼ �qabûi;ið1� HÞ o
ot
ðpa � pwÞ þ qa½1� ða þ bðp̂a � p̂wÞÞð1� HÞ	 o

ot
ðui;iÞ. ð20Þ
3.3. Continuity and transfer equations for water

Again by applying the generalized Darcy�s (1856) law for water transfer and mass conservation law to-
gether, one can obtain the same relation for water (Alonso et al., 1988).

Applying the mass conservation law for water, the water transfer equation will be
o

ot
½qwnSr	 þ div½qwuw	 ¼ 0; ð21Þ
where qw is water density.
Considering Eq. (9) and again assuming constant qw and Kw in space and dispensing with variations of

qw in time, we have
qwKw

cw
r2pw ¼ qw

o

ot
½nSr	. ð22Þ
A discussion similar to that made for Ka shows that it is inevitable to dispense with variations of Kw in the
specified regions of Sr. Assuming constant Kw for the specified regions of Sr is, indeed, assuming it as a step
function of Sr that simply reflects the basic concept of the relation between Kw and Sr.

The right-hand side of Eq. (22) has previously derived in Eq. (14) and consequently we obtain
qwKw

cw
r2pw ¼ qwbûi;i

o

ot
ðpa � pwÞ þ qw½a þ bðp̂a � p̂wÞ	

o

ot
ðui;iÞ. ð23Þ
4. Laplace transform

One of the most common and straightforward methods for eliminating the time variable of a partial dif-
ferential equation is to apply the Laplace transform. In this manner, after solving the differential equation
in Laplace transform domain, one can obtain the time domain solution by applying an inverse Laplace
transform on the Laplace transform domain solution. We remember that (Spiegel, 1965)
L½f ðx; tÞ; s	 ¼ ~f ðx; sÞ ¼
Z 1

0

e�stf ðx; tÞdt

L
o

ot
f ; s; t

� �
¼ sLðf Þ � fðt¼0Þ

ð24Þ
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and assuming
ui;ðt¼0Þ ¼ 0 ð25Þ
Eqs. (6), (20) and (23) will be reduced to Eqs. (26)–(28)
ðk þ lÞ~uj;ij þ l~ui;jj � ~pa;i þ Dsð~pa;i � ~pw;iÞ þ ~bi ¼ 0; ð26Þ

qaKa

ca
r2~pa þ

HqaKw

cw
r2~pw ¼ qas½1� ða þ bðp̂a � p̂wÞÞð1� HÞ	~ui;i

� qaûi;isbð1� HÞð~pa � ~pwÞ � qa½1� ða þ bðp̂a � p̂wÞÞð1� HÞ	ui;iðt¼0Þ
þ qaûi;ibð1� HÞðpaðt¼0Þ � pwðt¼0ÞÞ; ð27Þ

qwKw

cw
r2~pw ¼ qws½a þ bðp̂a � p̂wÞ	~ui;i þ qwsûi;ibð~pa � ~pwÞ

� qw½a þ bðp̂a � p̂wÞ	ui;iðt¼0Þ � qwûi;ibðpaðt¼0Þ � pwðt¼0ÞÞ; ð28Þ
where L is the Laplace transform operator, s is the Laplace transform parameter and the tilde denotes the
variables in Laplace transform domain. Finally, one can simplify the above three equations in the forms of
c11~uj;ij þ c12~ui;jj þ c13~pa;i þ c14~pw;i þ c15 ¼ 0; ð29Þ

c21~ui;i þ c22~pa þ c23r2~pa þ c24~pw þ c25r2~pw þ c26 ¼ 0; ð30Þ

c31~ui;i þ c32~pa þ c33r2~pw þ c34~pw þ c35 ¼ 0 i; j ¼ 1; 2; ð31Þ

where the cij coefficients are
c11 ¼ k þ l

c12 ¼ l

c13 ¼ �1þ Ds

c14 ¼ �Ds

c15 ¼ ~bi
c21 ¼ sqa½1� ða þ bðp̂a � p̂wÞÞð1� HÞ	
c22 ¼ �sqabûi;ið1� HÞ

c23 ¼ � qaKa

ca
c24 ¼ sqabûi;ið1� HÞ

c25 ¼ �HqaKw

cw
c26 ¼ �qa½1� ða þ bðp̂a � p̂wÞÞð1� HÞ	ui;iðt¼0Þ þ qaûi;ibð1� HÞðpaðt¼0Þ � pwðt¼0ÞÞ
c31 ¼ sqw½a þ bðp̂a � p̂wÞ	
c32 ¼ sqwbûi;i

c33 ¼ � qwKw

cw
c34 ¼ �sqwbûi;i
c35 ¼ �qw½a þ bðp̂a � p̂wÞ	ui;iðt¼0Þ � qwbðpaðt¼0Þ � pwðt¼0ÞÞûi;i.

ð32Þ
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5. Green’s functions

One may write the differential equations (29)–(31) in the following matrix form:
½Cij	 � ~x ¼ ~f ; ð33Þ

where Cij = cij · dij and
xi ¼ ~ui i ¼ 1; 2

x3 ¼ ~pa

x4 ¼ ~pw

ð34Þ
and
fi ¼ �~bi i ¼ 1; 2

f3 ¼ �c26

f4 ¼ �c35

ð35Þ
in which dij are the differential operators.
The physical interpretation of Green�s function, fundamental solution or kernel of a differential equation

is a potential function p(x,n) in the point x of the domain that has been resulted from an excitation e(n) in
excitation point n. This excitation may be the Dirac delta function or the unit impact load. On the other
hand, the fundamental solution is the simplest solution of the differential equation that is due to a unit
and instantly impact in a domain with infinite boundaries.

Therefore, one may assume a unit point load d(x) instead of the right-hand side of the differential equa-
tion. The most common and straightforward method for deriving the Green�s functions of a system of dif-
ferential equations, is the Kupradze (Kupradze et al., 1979) or Hörmander�s method (Hörmander, 1963).
According to this method, the problem is to find the function G ¼ ½~gij	 which satisfies the equation
½Cik	½~gkj	 þ ½I 	dðxÞ ¼ 0; ð36Þ
where [I] is the identity matrix. Also from the matrix algebra we know that
½Cik	½C�
kj	 ¼ ½I 	 detðCijÞ. ð37Þ
If there is a scalar function that satisfies Eq. (38)
detðCijÞu þ dðxÞ ¼ 0; ð38Þ

substituting from Eq. (37) into Eq. (38) and multiplying by [I], one may obtain
½Cik	½C�
kj	u þ ½I 	dðxÞ ¼ 0. ð39Þ
The comparison of Eqs. (36) and (39) leads to
½~gkj	 ¼ ½C�
kj	u. ð40Þ
Indeed, the problem has been reduced to finding a scalar function u that satisfies Eq. (38) and the com-
putation of cofactor matrix ½C�

kj	.
Computing the determinant of the [Cij] matrix, Eq. (38) under Laplace transform is as follows:
ðD1r8 þ D2r6 þ D3r4Þu þ 1

s
dðxÞ ¼ 0; ð41Þ
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where $2n = ($2)n represents n occurrence(s) of the Laplacian operator. Also D1, D2 and D3 are
D1 ¼ c12ðc11 þ c12Þc23c33
D2 ¼ c12ð�c14c23c31 þ c13ðc25c31 � c21c33Þ � ðc11 þ c12Þðc25c32 � c22c33 � c23c34ÞÞ
D3 ¼ c12ðc13ðc24c31 � c21c34Þ þ c14ðc21c32 � c22c31Þ � ðc11 þ c12Þðc24c32 � c22c34ÞÞ.

ð42Þ
Now, one can write Eq. (41) in the following form:
r4 þ D2

D1

r2 þ D3

D1

� �
½D1sr4ðuÞ	 þ dðxÞ ¼ 0 ð43Þ
defining an interim function U as
U ¼ D1sr4ðuÞ ð44Þ
Eq. (43) will be changed to the form of
ðr2 � k2
1Þðr2 � k2

2ÞU þ dðxÞ ¼ 0; ð45Þ
where k2
1 and k2

2 are
k2
1;2 ¼

�D2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2 � 4D1D3

q
2D1

. ð46Þ
Eq. (45) may be written as either of the two Eqs. (47) and (48)
ðr2 � k2
1ÞU1 þ dðxÞ ¼ 0

U1 ¼ ðr2 � k2
2ÞU

ð47Þ

ðr2 � k2
2ÞU2 þ dðxÞ ¼ 0

U2 ¼ ðr2 � k2
1ÞU

ð48Þ
The above differential equations are of the familiar Helmholtz type. The Green�s function of Helmholtz dif-
ferential equations for an only r-dependent fully symmetric two-dimensional domain is (Arfken and Weber,
2001 and Ocendon et al., 1999)
Ui ¼
K0ðkirÞ
2p

i ¼ 1; 2; ð49Þ
where Kn is the modified Bessel function of order n. However, by subtracting Eq. (47) from (48), one can
obtain
U2 � U1 ¼ ðk2
2 � k2

1ÞU ð50Þ

and therefore
U ¼ U2 � U1

ðk2
2 � k2

1Þ
¼ K0ðk2rÞ � K0ðk1rÞ

2pðk2
2 � k2

1Þ
. ð51Þ
Applying two times the two-dimensional inverse Laplacian operator (Spiegel, 1999)
r�2ð#Þ ¼
Z
r

r�1

Z
r
ðr#Þdr

� �
dr ð52Þ
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one may obtain the u function as
uðr; sÞ ¼ 1

2pD1sðk2
2 � k2

1Þ
K0ðk2rÞ

k4
2

� K0ðk1rÞ
k4
1

 !
. ð53Þ
The ½~gij	 Green�s functions or cofactor matrix components ½C�
ij	 are
~gij ¼ ½dijðF 11r6 þ F 12r4 þ F 13r2Þ þ ðF 21r4oioj þ F 22r2oioj þ F 23oiojÞ	u

~gi3 ¼ ðF 31r4oi þ F 32r2oiÞu

~gi4 ¼ ðF 41r4oi þ F 42r2oiÞu

~g3i ¼ ðF 51r4oi þ F 52r2oiÞu

~g4i ¼ ðF 61r4oi þ F 62r2oiÞu

~g33 ¼ ðF 71r6 þ F 72r4Þu

~g34 ¼ ðF 73r6 þ F 74r4Þu

~g43 ¼ ðF 75r4Þu

~g44 ¼ ðF 76r6 þ F 77r4Þu i; j ¼ 1; 2.

ð54Þ
The Fij coefficients are presented in Appendix A.

5.1. Green’s functions in Laplace transform domain

Now by substituting the u function from Eq. (53) into Eq. (54) and defining intermediate Ci functions
C1 ¼ K11X11 þ K12X12 þ K13X13

C2 ¼ K21X31 þ K22X32 þ K23X33

C3 ¼ K21X11 þ K22X12 þ K23X13

ð55Þ
one can obtain the Green�s functions in Laplace transform domain as follow:
~gij ¼ dijC1 þ
1

r3
ð2xixj � dijr2ÞC2 þ

xixj
r2

C3

~gi3 ¼ � xi
r
ðK31X31 þ K32X32Þ

~gi4 ¼ � xi
r
ðK41X31 þ K42X32Þ

~g3i ¼ � xi
r
ðK51X21 þ K52X22Þ

~g4i ¼ � xi
r
ðK61X21 þ K62X22Þ

~g33 ¼ K71X11 þ K72X12

~g34 ¼ K73X11 þ K74X12

~g43 ¼ K75X12

~g44 ¼ K76X11 þ K77X12 i; j ¼ 1; 2.

ð56Þ
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The above Green�s functions are presented in extended form in Appendix D. It is evident from the rela-
tionships in Appendix D that ~g3i ¼ s~gi3 and ~g4i ¼ s~gi4 as have been emphasized by Chen (1994a). Further-
more, Kij coefficients and Xij intermediate functions are shown in Appendices B and C, respectively.
5.2. Green’s functions in the time domain

In order to apply the inverse Laplace transform to the Laplace transform domain Green�s functions, we
need to find the inverse Laplace transforms of the following terms:
K0ðrk2Þ
ðk2

2 � k2
1Þ
;

k2
2K0ðrk2Þ

sðk2
2 � k2

1Þ
;

sK0ðrk2Þ
k2
2ðk

2
2 � k2

1Þ
;

K1ðrk2Þk2

ðk2
2 � k2

1Þ
;

sK1ðrk2Þ
k2ðk2

2 � k2
1Þ
;

K1ðrk2Þk2

sðk2
2 � k2

1Þ
;

K1ðrk2Þ
k2ðk2

2 � k2
1Þ
;

sK1ðrk2Þ
k3
2ðk

2
2 � k2

1Þ
; ð57Þ
where
k1 ¼
ffiffiffiffiffiffi
m1

p ffiffi
s

p

k2 ¼
ffiffiffiffiffiffi
m2

p ffiffi
s

p

k2
2 � k2

1 ¼ m3s
ð58Þ
and the mi coefficients in Eq. (58) are
m1;2 ¼
�D2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2 � 4D1D3

s2

s
2D1

m3 ¼ m2 � m1

ð59Þ
According to the Laplace transform references, the inverse Laplace transform of the following terms are
available (Abramowitz and Stegun, 1965 and Spiegel, 1965):
K0ða
ffiffi
s

p Þ
s

;
K1ða

ffiffi
s

p Þffiffi
s

p ;
K1ða

ffiffi
s

p Þ
s
ffiffi
s

p . ð60Þ
The inverse Laplace transforms of the terms in Eq. (60) are shown as Kij[a,t] in Appendix E. Now, using
the inverse Laplace transforms Kij[a,t], we can obtain the inverse Laplace transforms of the Green�s func-
tions in Eq. (56). For this purpose, the intermediate functions Wij[r, t] are defined in Appendix F. Using the
Kij coefficients and the intermediate functions Wij[r, t], we are able to derive the Green�s functions in the time
domain, which are shown in Eq. (62). Defining the Hi intermediate functions as follow:
H1 ¼ K11W11½r; t	 þ K12W12½r; t	 þ K13W13½r; t	
H2 ¼ K21W31½r; t	 þ K22W32½r; t	 þ K23W33½r; t	
H3 ¼ K21W11½r; t	 þ K22W12½r; t	 þ K23W13½r; t	

ð61Þ
the Green�s functions are
gij½r; xi; xj; t	 ¼ dijH1 þ
1

r3
ð2xixj � dijr2ÞH2 þ

xixj
r2

H3

gi3½r; xi; t	 ¼ � xi
r
ðK31W31½r; t	 þ K32W32½r; t	Þ

gi4½r; xi; t	 ¼ � xi
r
ðK41W31½r; t	 þ K42W32½r; t	Þ
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g3i½r; xi; t	 ¼ � xi
r
ðK51W21½r; t	 þ K52W22½r; t	Þ

g4i½r; xi; t	 ¼ � xi
r
ðK61W21½r; t	 þ K62W22½r; t	Þ

g33½r; t	 ¼ K71W11½r; t	 þ K72W12½r; t	

g34½r; t	 ¼ K73W11½r; t	 þ K74W12½r; t	

g43½r; t	 ¼ K75W12½r; t	

g44½r; t	 ¼ K76W11½r; t	 þ K77W12½r; t	 i; j ¼ 1; 2. ð62Þ
6. Verification

Since the solutions are presented here for the first time there is no chance for them to be compared with
other corresponding results to find the probable differences and their reasons. However, for the solutions
(mathematical model) to be verified mathematically (Babuska and Oden, 2004), we can show that, for
example if the conditions approach to the poroelastostatic case, the corresponding Green�s functions will
approach to the poroelastostatic Green�s functions {neglecting dissolved air in water and the suction effect
(i.e. H = Ds = 0)}. For this purpose and considering Eqs. (29)–(31), we only need to substitute the coeffi-
cients of terms that have time variations, such as bS r and n̂, with zero. This means to substitute the terms n
(or bS r) and g (or (1� bS r)) and also ûi;i in Kij statements, with zero. Therefore, only the following coefficients
will remain non-vanishing:
K11 ¼
1

2pl

K21 ¼ � k þ l
2plðk þ 2lÞ

K31 ¼ � ca
2pðk þ 2lÞKaqa

K71 ¼ � ca
2pKaqa

K76 ¼ � cw
2pKwqw

.

ð63Þ
Among the Xij terms in Laplace transform Green�s functions in Appendix C, those have non-zero terms
are
X11 ¼
1

sðk2
2 � k2

1Þ
ðK0ðk2rÞk2

2 � K0ðk1rÞk2
1Þ

X31 ¼
1

sðk2
2 � k2

1Þ
ðK1ðk2rÞk2 � K1ðk1rÞk1Þ.

ð64Þ
By substituting the terms n (or bS r) and also ûi;i with zero, all the mi terms and subsequently k1 and k2 will
vanish. Therefore we necessarily shall find the limits of X11 and X31 while k1 and k2 approach zero. These
limits are
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lim
k1;k2!0

fX11g ¼ � lnðrÞ
s

lim
k1;k2!0

fX31g ¼ r
2s

1

2
þ lnðrÞ

� �
.

ð65Þ
Furthermore, all of the Xij terms in the Green�s functions in Laplace transform domain that have zero
coefficients, have no limits and consequently, their coefficients being zero seems to be normal or inevitable.

Using the limits in Eq. (65), the Green�s functions in Laplace transform domain, after some simplifica-
tions will be obtained as follow:
~gij ¼
½ðk þ lÞ � 2ðk þ 3lÞ lnðrÞ	r2dij þ 2ðk þ lÞxixj

8pr2slðk þ 2lÞ
~g3i ¼ ~g4i ¼ 0

~gi3 ¼
caxi½1þ 2 lnðrÞ	
4psðk þ 2lÞKaqa

~gi4 ¼ 0

~g33 ¼
ca lnðrÞ
2psKaqa

~g34 ¼ ~g43 ¼ 0

~g44 ¼
cw lnðrÞ
2psKwqw

i; j ¼ 1; 2

ð66Þ
and their corresponding terms in time domain are
gij ¼
½ðk þ lÞ � 2ðk þ 3lÞ lnðrÞ	r2dij þ 2ðk þ lÞxixj

8pr2lðk þ 2lÞ
g3i ¼ g4i ¼ 0

gi3 ¼
caxi½1þ 2 lnðrÞ	
4pðk þ 2lÞKaqa

gi4 ¼ 0

g33 ¼
ca lnðrÞ
2pKaqa

g34 ¼ g43 ¼ 0

g44 ¼
cw lnðrÞ
2pKwqw

i; j ¼ 1; 2

ð67Þ
that are exactly the poroelastostatic Green�s functions (Banerjee, 1994; Gatmiri and Jabbari, 2004a).
Also, from mathematical point of view, one can determine the singularities of the Green�s functions.

Since for the common physical parameters for unsaturated soils
lim
r!0

fWijg ¼ 1

lim
r!1

fWijg ¼ 0 i; j ¼ 1; 3
ð68Þ
the singularity of all the Green�s functions is only at r = 0.
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7. Conclusion

In this research the closed form two-dimensional Green�s functions of the governing equations of
unsaturated soils, including equilibrium equations with linear elastic constitutive equations and two
equations of air and water transfer have been derived in Laplace transform and time domains for the
first time. For verification of the resulted Green�s functions, it has been demonstrated that if the condi-
tions approach to poroelastostatic case, the Green�s functions will approach to poroelastostatic Green�s
functions exactly.
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Appendix A

Fij coefficients:
F 11 ¼ ðc11 þ c12Þc23c33

F 12 ¼ �c14c23c31 þ c13ðc25c31 � c21c33Þ � ðc11 þ c12Þðc25c32 � c22c33 � c23c34Þ

F 13 ¼ c14ðc21c32 � c22c31Þ þ c13ðc24c31 � c21c34Þ � ðc11 þ c12Þðc24c32 � c22c34Þ

F 21 ¼ �c11c23c33

F 22 ¼ c14c23c31 þ c13ðc21c33 � c25c31Þ þ c11ðc25c32 � c22c33 � c23c34Þ

F 23 ¼ c14ðc22c31 � c21c32Þ þ c13ðc21c34 � c24c31Þ þ c11ðc24c32 � c22c34Þ

F 31 ¼ �c12c13c33 F 32 ¼ c12ðc14c32 � c13c34Þ

F 41 ¼ c12ðc13c25 � c14c23Þ F 42 ¼ c12ðc13c24 � c14c22Þ

F 51 ¼ c12ðc25c31 � c21c33Þ F 52 ¼ c12ðc24c31 � c21c34Þ

F 61 ¼ �c12c23c31 F 62 ¼ c12ðc21c32 � c22c31Þ

F 71 ¼ c12ðc11 þ c12Þc33 F 72 ¼ c12ð�c14c31 þ ðc11 þ c12Þc34Þ

F 73 ¼ �c12ðc11 þ c12Þc25 F 74 ¼ �c12ð�c14c21 þ ðc11 þ c12Þc24Þ

F 75 ¼ �c12ð�c13c31 þ ðc11 þ c12Þc32Þ F 76 ¼ c12ðc11 þ c12Þc23

F 77 ¼ c12ð�c13c21 þ ðc11 þ c12Þc22Þ
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Appendix B

Kij coefficients:
n ¼ a þ bðp̂a � p̂wÞ g ¼ 1� nð1� HÞ

K11 ¼
F 11

2pD1

¼ 1

2pl

K12 ¼
F 12

2pD1s
¼ bðk þ 2lÞðKacw þ KwcaÞûi;i þ Kwcað1� nÞð�1þ DsÞ � KacwnDs

2plðk þ 2lÞKaKw

K13 ¼
F 13

2pD1s2
¼ � bcacwûi;i

2plðk þ 2lÞKaKw

K21 ¼
F 21

2pD1

¼ � k þ l
2plðk þ 2lÞ

K22 ¼
F 22

2pD1s
¼ � bðk þ lÞðKacw þ KwcaÞûi;i þ Kwcað1� nÞð�1þ DsÞ � KacwnDs

2plðk þ 2lÞKaKw

K23 ¼
F 23

2pD1s2
¼ �K13

K31 ¼
F 31

2pD1

¼ cað�1þ DsÞ
2pðk þ 2lÞKaqa

K32 ¼
F 32

2pD1s
¼ � bcacwûi;i

2pðk þ 2lÞKaKwqa

K41 ¼
F 41

2pD1

¼ �Hð�1þ DsÞKwca þ DsKacw
2pðk þ 2lÞKaKwqw

K42 ¼
F 42

2pD1s
¼ ð�1þ HÞbcacwûi;i

2pðk þ 2lÞKaKwqw

K51 ¼
F 51

2pD1s
¼ ð1� nÞca

2pðk þ 2lÞKa

K52 ¼
F 52

2pD1s2
¼ lK23

K61 ¼
F 61

2pD1s
¼ cwn

2pðk þ 2lÞKw

K62 ¼
F 62

4pD1s2
¼ K52

K71 ¼
F 71

2pD1

¼ � ca
2pKaqa

K72 ¼
F 72

2pD1s
¼ cacwðnDs � bðk þ 2lÞûi;iÞ

2pðk þ 2lÞKaKwqa

K73 ¼
F 73

2pD1

¼ Hca
2pKaqw

K74 ¼
F 74

2pD1s
¼ � cacwðgDs þ ð1� HÞbûi;iðk þ 2lÞÞ

2pðk þ 2lÞKaKwqw

K75 ¼
F 75

2pD1s
¼ � cacwðnð1� DsÞ þ bûi;iðk þ 2lÞÞ

2pðk þ 2lÞKaKwqa

K76 ¼
F 76

2pD1

¼ � cw
2pKwqw

K77 ¼
F 77

2pD1s
¼ cacwðgð1� DsÞ � ð1� HÞbûi;iðk þ 2lÞÞ

2pðk þ 2lÞKaKwqw
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Appendix C

The intermediate functions Xij:
X11 ¼
K0ðrk2Þk2

2 � K0ðrk1Þk2
1

sðk2
2 � k2

1Þ
X12 ¼

K0ðrk2Þ � K0ðrk1Þ
ðk2

2 � k2
1Þ

X13 ¼
s

ðk2
2 � k2

1Þ
K0ðrk2Þ

k2
2

� K0ðrk1Þ
k2
1

 !
X21 ¼ 1

ðk2
2 � k2

1Þ
ðK1ðrk2Þk2 � K1ðrk1Þk1Þ X22 ¼

s

ðk2
2 � k2

1Þ
K1ðrk2Þ

k2

� K1ðrk1Þ
k1

� �
X31 ¼

1

sðk2
2 � k2

1Þ
ðK1ðrk2Þk2 � K1ðrk1Þk1Þ X32 ¼

1

ðk2
2 � k2

1Þ
K1ðrk2Þ

k2

� K1ðrk1Þ
k1

� �
X33 ¼

s

ðk2
2 � k2

1Þ
K1ðrk2Þ

k3
2

� K1ðrk1Þ
k3
1

 !
Appendix D

The Green�s functions in Laplace transform domain:
~gij ¼ dijK11

K0ðrk2Þk2
2 � K0ðrk1Þk2

1

sðk2
2 � k2

1Þ
þ dijK12

K0ðrk2Þ � K0ðrk1Þ
ðk2

2 � k2
1Þ

þ dijK13

s

ðk2
2 � k2

1Þ
K0ðrk2Þ

k2
2

� K0ðrk1Þ
k2
1

 !
þ K21

1

r3sðk2
2 � k2

1Þ
ð2xixj � dijr2ÞðK1ðrk2Þk2 � K1ðrk1Þk1Þ þ xixjrðK0ðrk2Þk2

2 � K0ðrk1Þk2
1Þ


 �
þ K22

1

r3ðk2
2 � k2

1Þ
ð2xixj � dijr2Þ

K1ðrk2Þ
k2

� K1ðrk1Þ
k1

� �
þ xixjrðK0ðrk2Þ � K0ðrk1ÞÞ

� �
þ K23

s

r3ðk2
2 � k2

1Þ
ð2xixj � dijr2Þ

K1ðrk2Þ
k3
2

� K1ðrk1Þ
k3
1

 !
þ xixjr

K0ðrk2Þ
k2
2

� K0ðrk1Þ
k2
1

 !" #
~gi3 ¼ �K31xi

r
1

sðk2
2 � k2

1Þ
ðK1ðrk2Þk2 � K1ðrk1Þk1Þ �

K32xi
r

1

ðk2
2 � k2

1Þ
K1ðrk2Þ

k2

� K1ðrk1Þ
k1

� �
~gi4 ¼ �K41xi

r
1

sðk2
2 � k2

1Þ
ðK1ðrk2Þk2 � K1ðrk1Þk1Þ �

K42xi
r

1

ðk2
2 � k2

1Þ
K1ðrk2Þ

k2

� K1ðrk1Þ
k1

� �
~g3i ¼ �K51xi

r
1

ðk2
2 � k2

1Þ
ðK1ðrk2Þk2 � K1ðrk1Þk1Þ �

K52xi
r

s

ðk2
2 � k2

1Þ
K1ðrk2Þ

k2

� K1ðrk1Þ
k1

� �
~g4i ¼ �K61xi

r
1

ðk2
2 � k2

1Þ
ðK1ðrk2Þk2 � K1ðrk1Þk1Þ �

K62xi
r

s

ðk2
2 � k2

1Þ
K1ðrk2Þ

k2

� K1ðrk1Þ
k1

� �
~g33 ¼ K71

K0ðrk2Þk2
2 � K0ðrk1Þk2

1

sðk2
2 � k2

1Þ
þ K72

K0ðrk2Þ � K0ðrk1Þ
ðk2

2 � k2
1Þ

~g34 ¼ K73

K0ðrk2Þk2
2 � K0ðrk1Þk2

1

sðk2
2 � k2

1Þ
þ K74

K0ðrk2Þ � K0ðrk1Þ
ðk2

2 � k2
1Þ

~g43 ¼ K75

K0ðrk2Þ � K0ðrk1Þ
ðk2

2 � k2
1Þ

~g44 ¼ K76

K0ðrk2Þk2
2 � K0ðrk1Þk2

1

sðk2
2 � k2

1Þ
þ K77

K0ðrk2Þ � K0ðrk1Þ
ðk2

2 � k2
1Þ
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Appendix E

The inverse Laplace transforms and intermediate functions Kij[a,t]:
K0½a; t	 ¼ L�1 K0ða
ffiffi
s

p Þ
s

� �
¼ 1

2
C 0;

a2

4t

� �
K11½a; t	 ¼ L�1 K1ða

ffiffi
s

p Þffiffi
s

p
� �

¼ 1

a
e�

a2
4t

K12½a; t	 ¼ L�1 K1ða
ffiffi
s

p Þ
s
ffiffi
s

p
� �

¼ e�
a2
4t t � 1

4
a2C 0;

a2

4t

� �

in which
Cða; xÞ ¼
Z 1

x
ta�1e�t dt
and Ki(x) is the modified Bessel function of order i.
Appendix F

The intermediate functions Wij[r, t]:
W11½r; t	 ¼ L�1fX11g ¼ 1

m3

ðm2K0½r
ffiffiffiffiffiffi
m2

p
; t	 � m1K0½r

ffiffiffiffiffiffi
m1

p
; t	Þ

W12½r; t	 ¼ L�1fX12g ¼ 1

m3

ðK0½r
ffiffiffiffiffiffi
m2

p
; t	 � K0½r

ffiffiffiffiffiffi
m1

p
; t	Þ

W13½r; t	 ¼ L�1fX13g ¼ 1

m3

1

m2

K0½r
ffiffiffiffiffiffi
m2

p
; t	 � 1

m1

K0½r
ffiffiffiffiffiffi
m1

p
; t	

� �
W21½r; t	 ¼ L�1fX21g ¼ 1

m3

ð ffiffiffiffiffiffi
m2

p
K11½r

ffiffiffiffiffiffi
m2

p
; t	 � ffiffiffiffiffiffi

m1

p
K11½r

ffiffiffiffiffiffi
m1

p
; t	Þ

W22½r; t	 ¼ L�1fX22g ¼ 1

m3

1ffiffiffiffiffiffi
m2

p K11½r
ffiffiffiffiffiffi
m2

p
; t	 � 1ffiffiffiffiffiffi

m1
p K11½r

ffiffiffiffiffiffi
m1

p
; t	

� �
W31½r; t	 ¼ L�1fX31g ¼ 1

m3

ð ffiffiffiffiffiffi
m2

p
K12½r

ffiffiffiffiffiffi
m2

p
; t	 � ffiffiffiffiffiffi

m1

p
K12½r

ffiffiffiffiffiffi
m1

p
; t	Þ

W32½r; t	 ¼ L�1fX32g ¼ 1

m3

1ffiffiffiffiffiffi
m2

p K12½r
ffiffiffiffiffiffi
m2

p
; t	 � 1ffiffiffiffiffiffi

m1
p K12½r

ffiffiffiffiffiffi
m1

p
; t	

� �
W33½r; t	 ¼ L�1fX33g ¼ 1

m3

1

m2
ffiffiffiffiffiffi
m2

p K12½r
ffiffiffiffiffiffi
m2

p
; t	 � 1

m1
ffiffiffiffiffiffi
m1

p K12½r
ffiffiffiffiffiffi
m1

p
; t	

� �
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